What Is the Role of the Gut Microbiome in Developing Parkinson’s Disease?

24 June 2015

A survey of the current literature suggests complex interactions, as reported in the Journal of Parkinson’s Disease

In recent years, an important Parkinson’s disease (PD) research focus has been on gut-related pathology, pathophysiology, and symptoms. Gastrointestinal dysfunction, in particular constipation, affects up to 80% of PD patients and idiopathic constipation is one of the strongest risk-factors for PD. Lifestyle factors such as smoking and coffee consumption, as well as blood urate levels, have been associated with a decreased PD risk. These factors may also be influenced by the bacteria living in the human gut mediating the effects of various chemicals and nutrients on disease processes. In a contribution in the current issue of the Journal of Parkinson’s Disease, researchers review some of the latest studies linking gut microbiota to PD.

“Considering the gastrointestinal involvement in PD, it was recently speculated, that the associations between smoking, coffee, and PD risk could be mediated by gut microbiota,” explained lead investigator Filip Scheperjans, MD, PhD, of the Department of Neurology, Helsinki University Hospital. “Through a comprehensive review of the medical literature, we looked at the possible mediatory role of gut microbiota, taking into account recent findings on microbiome composition in PD and their relevance to gut inflammation and permeability, as well as extending the scope of the investigation to include urate.”

While it is known that a history of smoking reduces the risk of PD by about 36%-50% and coffee consumption reduces risk by about 33%, the underlying mechanisms are unclear. At the same time, the concentrations of different microbiota are altered in PD patients, where for example, Prevotellaceae bacteria are found in reduced levels.

The literature review indicated that smoking affects gut microbiome composition and this seems to be associated with improved barrier function and anti-inflammatory effects in the colonic mucosa. It remains to be established whether these simultaneous changes are causally related to each other and eventually to PD. “Also a possible reverse effect of gut microbiota on smoking propensity and its relevance for PD is an interesting field for future studies,” added Dr. Scheperjans.

In the case of coffee consumption, most of the direct effects on the GI tract are related to gut motility, such as gastro-esophageal reflux, gallbladder contraction, and increasing colonic motor activity. The authors reviewed studies relating gut motility to microbiota compositions and suggest that there might be complex relationships between coffee, microbiome concentrations, and the altered gut motility found in PD patients.

They also note a few studies concerning urate metabolism related to microbiome concentrations in PD patients. While the evidence is as yet scarce, they suggest that further studies could be valuable.

Caption: Flow chart illustrating reported effects between urate, smoking, coffee, and different physiological domains with possible relevance for PD risk. Furthermore, it is shown which of these factors are also related to changes in gut microbiota providing ground for interactions. However, at present direct evidence for such interactions is missing and information is derived from in vitro as well as in vivo studies on humans and animal models.

Intriguing associations have been reported based on which microbiota could indeed play a role at the interface between environmental and lifestyle factors and PD. The most promising domains seem to be related to gut barrier function, inflammation, oxidative stress, gut motility, and metabolism. “By studying these we may gain more insight into the hugely complex network of microbiome-host-interactions underlying the observed associations,” concluded Dr. Scheperjans.“Considering the well-established gastrointestinal abnormalities in PD and the vast interactions of gut microbiota with the human host, it seems mandatory to explore whether gut microbiota are involved in this devastating disorder.”

# # #

NOTES FOR EDITORS

Linking Smoking, Coffee, Urate, and Parkinson’s Disease – A Role for Gut Microbiota?” by Filip Scheperjans, Eero Pekkonen, Seppo Kaakkola, and Petri Auvinen (DOI 10.3233/JPD-150557), Journal of Parkinson’s Disease, Volume 5, Issue 2 (2015) published by IOS Press.

To obtain the full text of this study and additional information contact Daphne Watrin, IOS Press, at +31 20 688 3355, d.watrin@iospress.nl. Journalists wishing to interview the authors should contact Anna-Mari Hursti at Anna-Mari.Hursti@hus.fi.

ABOUT THE JOURNAL OF PARKINSON’S DISEASE (JPD)

Launched in June 2011 the Journal of Parkinson’s Disease is dedicated to providing an open forum for original research in basic science, translational research and clinical medicine that will expedite our fundamental understanding and improve treatment of Parkinson’s disease. The journal is international and multidisciplinary and aims to promote progress in the epidemiology, etiology, genetics, molecular correlates, pathogenesis, pharmacology, psychology, diagnosis and treatment of Parkinson’s disease. It publishes research reports, reviews, short communications, and letters-to-the-editor and offers very rapid publication and an affordable open access option.

ABOUT IOS PRESS

Commencing its publishing activities in 1987, IOS Press (www.iospress.nl) serves the information needs of scientific and medical communities worldwide. IOS Press now (co-)publishes over 100 international journals and about 130 book titles each year on subjects ranging from computer sciences and mathematics to medicine and the natural sciences.

IOS Press continues its rapid growth, embracing new technologies for the timely dissemination of information. All journals are available electronically and an e-book platform was launched in 2005.

Headquartered in Amsterdam with satellite offices in the USA, Germany, India and China, IOS Press has established several strategic co-publishing initiatives. Notable acquisitions included Delft University Press in 2005 and Millpress Science Publishers in 2008.